Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Biophys J ; 122(4): 646-660, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2176841

ABSTRACT

We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide (FP) sequences within coronavirus (CoV) spike proteins. Within the FPs of severe acute respiratory syndrome CoV 2 and Middle East respiratory syndrome CoV (MERS-CoV), a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. Although a non-polar triad (Leu-Leu-Phe (LLF)) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS-2 and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore whether single-molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask whether sequence variations between FP1 from SARS-2 and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single-molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single-residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single-residue diversity in viral FPs, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19 , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/metabolism , Peptides/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
2.
J Virol ; 96(15): e0095822, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1949998

ABSTRACT

The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.


Subject(s)
Evolution, Molecular , Middle East Respiratory Syndrome Coronavirus , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/metabolism , Polysaccharides/metabolism , Protein Domains , Receptors, Virus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
J Virol ; 96(8): e0201321, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1779314

ABSTRACT

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.


Subject(s)
Lactams , Leucine , Nitriles , Peptide Hydrolases , Proline , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Leucine/chemistry , Leucine/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/enzymology , Nitriles/chemistry , Nitriles/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proline/chemistry , Proline/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , COVID-19 Drug Treatment
4.
Sci Rep ; 12(1): 1260, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1648095

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus, responsible for outbreaks of a severe respiratory illness in humans with a fatality rate of 30%. Currently, there are no vaccines or United States food and drug administration (FDA)-approved therapeutics for humans. The spike protein displayed on the surface of MERS-CoV functions in the attachment and fusion of virions to host cellular membranes and is the target of the host antibody response. Here, we provide a molecular method for neutralizing MERS-CoV through potent antibody-mediated targeting of the receptor-binding subdomain (RBD) of the spike protein. The structural characterization of the neutralizing antibody (KNIH90-F1) complexed with RBD using X-ray crystallography revealed three critical epitopes (D509, R511, and E513) in the RBD region of the spike protein. Further investigation of MERS-CoV mutants that escaped neutralization by the antibody supported the identification of these epitopes in the RBD region. The neutralizing activity of this antibody is solely provided by these specific molecular structures. This work should contribute to the development of vaccines or therapeutic antibodies for MERS-CoV.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Middle East Respiratory Syndrome Coronavirus/chemistry , Crystallography, X-Ray , Humans , Protein Domains
5.
Biomol NMR Assign ; 16(1): 9-16, 2022 04.
Article in English | MEDLINE | ID: covidwho-1482296

ABSTRACT

SARS-CoV and MERS-CoV Macro Domains (MDs) exhibit topological and conformational features that resemble the nsP3b macro (or "X") domain of SARS-CoV-2. Indeed, all the three domains (SARS-CoV-2, SARS-CoV and MERS-CoV MDs) fold in a three-layer α/ß/α sandwich structure, as reported by crystallographic structural investigation of SARS-CoV MD and MERS-CoV MD. These viral MDs are able to bind ADP-ribose as many other MDs from different kingdoms. They have been characterized also as de-ADP-ribosylating enzymes. For this reason, these viral macrodomains recently emerged as important drug targets since they can counteract antiviral ADP-ribosylation mediated by poly-ADP-ribose polymerase (PARPs). Even in presence of the 3D structures of SARS-CoV MD and of MERS-CoV MD, we report herein the almost complete NMR backbone (1H, 13C, 15N) of SARS-CoV MD and MERS-CoV proteins in the free and ADPr bound forms, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will help to further understanding of the atomic-level conformational dynamics of these proteins and will allow an extensive screening of small molecules as potential antiviral drugs.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Adenosine Diphosphate Ribose/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , SARS-CoV-2
7.
Viruses ; 13(8)2021 08 15.
Article in English | MEDLINE | ID: covidwho-1355053

ABSTRACT

We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in "open" and "closed" conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the "open" state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.


Subject(s)
Choline/metabolism , Indoles/metabolism , Isoindoles/metabolism , Middle East Respiratory Syndrome Coronavirus/chemistry , Organometallic Compounds/metabolism , Photosensitizing Agents/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Zinc Compounds/metabolism , Binding Sites , Indoles/chemistry , Methylene Blue/metabolism , Models, Molecular , Molecular Dynamics Simulation , Organometallic Compounds/chemistry , Protein Conformation , Protein Domains , Protein Subunits/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Static Electricity
9.
Proteins ; 89(10): 1289-1299, 2021 10.
Article in English | MEDLINE | ID: covidwho-1233229

ABSTRACT

A novel virus, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) worldwide appeared in 2019. Detailed scientific knowledge of the members of the Coronaviridae family, including the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is currently lacking. Structural studies of the MERS-CoV proteins in the current literature are extremely limited. We present here detailed characterization of the structural properties of MERS-CoV macro domain in aqueous solution. Additionally, we studied the impacts of chosen force field parameters and parallel tempering simulation techniques on the predicted structural properties of MERS-CoV macro domain in aqueous solution. For this purpose, we conducted extensive Hamiltonian-replica exchange molecular dynamics simulations and Temperature-replica exchange molecular dynamics simulations using the CHARMM36m and AMBER99SB parameters for the macro domain. This study shows that the predicted secondary structure properties including their propensities depend on the chosen simulation technique and force field parameter. We perform structural clustering based on the radius of gyration and end-to-end distance of MERS-CoV macro domain in aqueous solution. We also report and analyze the residue-level intrinsic disorder features, flexibility and secondary structure. Furthermore, we study the propensities of this macro domain for protein-protein interactions and for the RNA and DNA binding. Overall, results are in agreement with available nuclear magnetic resonance spectroscopy findings and present more detailed insights into the structural properties of MERS CoV macro domain in aqueous solution. All in all, we present the structural properties of the aqueous MERS-CoV macro domain using different parallel tempering simulation techniques, force field parameters and bioinformatics tools.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Dynamics Simulation , Water/chemistry , Water/metabolism , Humans , Protein Domains/physiology , Protein Structure, Secondary , Solutions
10.
Clin Chem ; 67(4): 672-683, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1165392

ABSTRACT

BACKGROUND: Infectious disease outbreaks such as the COVID-19 (coronavirus disease 2019) pandemic call for rapid response and complete screening of the suspected community population to identify potential carriers of pathogens. Central laboratories rely on time-consuming sample collection methods that are rarely available in resource-limited settings. METHODS: We present a highly automated and fully integrated mobile laboratory for fast deployment in response to infectious disease outbreaks. The mobile laboratory was equipped with a 6-axis robot arm for automated oropharyngeal swab specimen collection; virus in the collected specimen was inactivated rapidly using an infrared heating module. Nucleic acid extraction and nested isothermal amplification were performed by a "sample in, answer out" laboratory-on-a-chip system, and the result was automatically reported by the onboard information platform. Each module was evaluated using pseudovirus or clinical samples. RESULTS: The mobile laboratory was stand-alone and self-sustaining and capable of on-site specimen collection, inactivation, analysis, and reporting. The automated sampling robot arm achieved sampling efficiency comparable to manual collection. The collected samples were inactivated in as short as 12 min with efficiency comparable to a water bath without damage to nucleic acid integrity. The limit of detection of the integrated microfluidic nucleic acid analyzer reached 150 copies/mL within 45 min. Clinical evaluation of the onboard microfluidic nucleic acid analyzer demonstrated good consistency with reverse transcription quantitative PCR with a κ coefficient of 0.979. CONCLUSIONS: The mobile laboratory provides a promising solution for fast deployment of medical diagnostic resources at critical junctions of infectious disease outbreaks and facilitates local containment of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) transmission.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Laboratories , Mobile Health Units , Pathology, Molecular/methods , RNA, Viral/analysis , Adult , Automobiles , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/instrumentation , Female , Humans , Lab-On-A-Chip Devices , Male , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Middle East Respiratory Syndrome Coronavirus/chemistry , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Pandemics , Pathology, Molecular/instrumentation , Robotics , SARS-CoV-2/chemistry
11.
Talanta ; 228: 122227, 2021 Jun 01.
Article in English | MEDLINE | ID: covidwho-1100758

ABSTRACT

Nucleic acid detection and quantification have been known to be important at various fields, from genetically modified organisms and gene expression to virus detection. For DNA molecules, digital PCR has been developed as an absolute quantification method which is not dependent on external calibrators. While when it comes to RNA molecules, reverse transcription (RT) step must be taken before PCR amplification to obtain cDNA. With different kinds of reverse transcriptase (RTase) and RT reaction conditions being used in laboratory assays, the efficiency of RT process differs a lot which led variety in quantification results of RNA molecules. In this study, we developed HPLC method combined with enzymatic digestion of RNA to nucleotides for quantification of RNA without RT process. This method was metrologically traceable to four nuceloside monophosphate (NMP) Certification Reference Materials of National Institute of Metrology, China (NIMC) for insurance of accuracy. The established method was used to evaluate the reverse transcription digital polymerase chain reaction (RT-dPCR) of three target genes of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) RNA, including open reading frame 1ab (ORF1ab), nucleocapsid protein (N) and envelope protein (E) gene. Three available RT kits had been evaluated and disparities were observed for the RT efficiency varied from 9% to 182%. It is thus demonstrated that HPLC combined with enzymatic digestion could be a useful method to quantify RNA molecules and evaluate RT efficiency. It is suggested that RT process should be optimized and identified in RNA quantification assays.


Subject(s)
Chromatography, High Pressure Liquid/methods , Phosphodiesterase I/chemistry , Proteolysis , RNA/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Chromatography, High Pressure Liquid/standards , Coronavirus Nucleocapsid Proteins/genetics , Crotalinae , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/genetics , Purine Nucleotides/standards , Pyrimidine Nucleotides/standards , RNA/chemistry , Reference Standards
12.
Cell ; 182(4): 828-842.e16, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-1027977

ABSTRACT

Neutralizing antibody responses to coronaviruses mainly target the receptor-binding domain (RBD) of the trimeric spike. Here, we characterized polyclonal immunoglobulin Gs (IgGs) and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their focus on RBD epitopes, recognition of alpha- and beta-coronaviruses, and contributions of avidity to increased binding/neutralization of IgGs over Fabs. Using electron microscopy, we examined specificities of polyclonal plasma Fabs, revealing recognition of both S1A and RBD epitopes on SARS-CoV-2 spike. Moreover, a 3.4 Å cryo-electron microscopy (cryo-EM) structure of a neutralizing monoclonal Fab-spike complex revealed an epitope that blocks ACE2 receptor binding. Modeling based on these structures suggested different potentials for inter-spike crosslinking by IgGs on viruses, and characterized IgGs would not be affected by identified SARS-CoV-2 spike mutations. Overall, our studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies.


Subject(s)
Antibodies, Neutralizing/chemistry , Betacoronavirus/chemistry , Coronavirus Infections/immunology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/therapy , Cross Reactions , Cryoelectron Microscopy , Epitope Mapping , Epitopes , Humans , Immunization, Passive , Immunoglobulin Fab Fragments/blood , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/ultrastructure , Immunoglobulin G/blood , Immunoglobulin G/isolation & purification , Immunoglobulin G/ultrastructure , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/immunology , Models, Molecular , Pandemics , Pneumonia, Viral/blood , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
13.
mBio ; 11(5)2020 10 20.
Article in English | MEDLINE | ID: covidwho-883314

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Lipopeptides/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , HEK293 Cells , Humans , Lipopeptides/chemistry , Membrane Fusion/drug effects , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Protein Domains , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2 , Vero Cells
14.
J Mol Graph Model ; 102: 107778, 2021 01.
Article in English | MEDLINE | ID: covidwho-866904

ABSTRACT

COVID-19 caused by SARS-CoV-2 have become a global pandemic with serious rate of fatalities. SARS-CoV and MERS-CoV have also caused serious outbreak previously but the intensity was much lower than the ongoing SARS-CoV-2. The main infectivity factor of all the three viruses is the spike glycoprotein. In this study we have examined the intrinsic dynamics of the prefusion, lying state of trimeric S protein of these viruses through Normal Mode Analysis using Anisotropic Network Model. The dynamic modes of the S proteins of the aforementioned viruses were compared by root mean square inner product (RMSIP), spectral overlap and cosine correlation matrix. S proteins show homogenous correlated or anticorrelated motions among their domains but direction of Cα atom among the spike proteins show less similarity. SARS-CoV-2 spike shows high vertically upward motion of the receptor binding motif implying its propensity for binding with the receptor even in the lying state. MERS-CoV spike shows unique dynamical motion compared to the other two S protein indicated by low RMSIP, spectral overlap and cosine correlation value. This study will guide in developing common potential inhibitor molecules against closed state of spike protein of these viruses to prevent conformational switching from lying to standing state.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/chemistry , SARS-CoV-2/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/virology , Humans , Models, Molecular , Molecular Dynamics Simulation , Pandemics , Protein Conformation , Protein Domains , Protein Structure, Quaternary
15.
Microbes Infect ; 22(10): 515-524, 2020.
Article in English | MEDLINE | ID: covidwho-779460

ABSTRACT

This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.


Subject(s)
BCG Vaccine/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/immunology , COVID-19/prevention & control , Epitope Mapping , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
16.
Front Immunol ; 11: 1949, 2020.
Article in English | MEDLINE | ID: covidwho-732902

ABSTRACT

After the 1918 flu pandemic, the world is again facing a similar situation. However, the advancement in medical science has made it possible to identify that the novel infectious agent is from the coronavirus family. Rapid genome sequencing by various groups helped in identifying the structure and function of the virus, its immunogenicity in diverse populations, and potential preventive measures. Coronavirus attacks the respiratory system, causing pneumonia and lymphopenia in infected individuals. Viral components like spike and nucleocapsid proteins trigger an immune response in the host to eliminate the virus. These viral antigens can be either recognized by the B cells or presented by MHC complexes to the T cells, resulting in antibody production, increased cytokine secretion, and cytolytic activity in the acute phase of infection. Genetic polymorphism in MHC enables it to present some of the T cell epitopes very well over the other MHC alleles. The association of MHC alleles and its downregulated expression has been correlated with disease severity against influenza and coronaviruses. Studies have reported that infected individuals can, after recovery, induce strong protective responses by generating a memory T-cell pool against SARS-CoV and MERS-CoV. These memory T cells were not persistent in the long term and, upon reactivation, caused local damage due to cross-reactivity. So far, the reports suggest that SARS-CoV-2, which is highly contagious, shows related symptoms in three different stages and develops an exhaustive T-cell pool at higher loads of viral infection. As there are no specific treatments available for this novel coronavirus, numerous small molecular drugs that are being used for the treatment of diseases like SARS, MERS, HIV, ebola, malaria, and tuberculosis are being given to COVID-19 patients, and clinical trials for many such drugs have already begun. A classical immunotherapy of convalescent plasma transfusion from recovered patients has also been initiated for the neutralization of viremia in terminally ill COVID-19 patients. Due to the limitations of plasma transfusion, researchers are now focusing on developing neutralizing antibodies against virus particles along with immuno-modulation of cytokines like IL-6, Type I interferons (IFNs), and TNF-α that could help in combating the infection. This review highlights the similarities of the coronaviruses that caused SARS and MERS to the novel SARS-CoV-2 in relation to their pathogenicity and immunogenicity and also focuses on various treatment strategies that could be employed for curing COVID-19.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Antigen Presentation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/chemistry , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokines/biosynthesis , Genome, Viral , Humans , Immune Evasion , Immunization, Passive/methods , Mice , Middle East Respiratory Syndrome Coronavirus/chemistry , Pandemics , Phylogeny , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/virology , T-Lymphocytes/immunology , Virus Replication
17.
Viruses ; 12(9)2020 08 19.
Article in English | MEDLINE | ID: covidwho-721525

ABSTRACT

COVID-19 novel coronavirus (CoV) disease caused by severe acquired respiratory syndrome (SARS)-CoV-2 manifests severe lethal respiratory illness in humans and has recently developed into a worldwide pandemic. The lack of effective treatment strategy and vaccines against the SARS-CoV-2 poses a threat to human health. An extremely high infection rate and multi-organ secondary infection within a short period of time makes this virus more deadly and challenging for therapeutic interventions. Despite high sequence similarity and utilization of common host-cell receptor, human angiotensin-converting enzyme-2 (ACE2) for virus entry, SARS-CoV-2 is much more infectious than SARS-CoV. Structure-based sequence comparison of the N-terminal domain (NTD) of the spike protein of Middle East respiratory syndrome (MERS)-CoV, SARS-CoV, and SARS-CoV-2 illustrate three divergent loop regions in SARS-CoV-2, which is reminiscent of MERS-CoV sialoside binding pockets. Comparative binding analysis with host sialosides revealed conformational flexibility of SARS-CoV-2 divergent loop regions to accommodate diverse glycan-rich sialosides. These key differences with SARS-CoV and similarity with MERS-CoV suggest an evolutionary adaptation of SARS-CoV-2 spike glycoprotein reciprocal interaction with host surface sialosides to infect host cells with wide tissue tropism.


Subject(s)
Betacoronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/chemistry , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Amino Sugars/metabolism , Betacoronavirus/physiology , Binding Sites , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , N-Acetylneuraminic Acid/metabolism , Protein Binding , Protein Domains , Receptors, Coronavirus , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Sialyl Lewis X Antigen/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Virus Internalization
18.
Front Cell Infect Microbiol ; 10: 405, 2020.
Article in English | MEDLINE | ID: covidwho-719722

ABSTRACT

The spread of the novel coronavirus (SARS-CoV-2) has triggered a global emergency, that demands urgent solutions for detection and therapy to prevent escalating health, social, and economic impacts. The spike protein (S) of this virus enables binding to the human receptor ACE2, and hence presents a prime target for vaccines preventing viral entry into host cells. The S proteins from SARS and SARS-CoV-2 are similar, but structural differences in the receptor binding domain (RBD) preclude the use of SARS-specific neutralizing antibodies to inhibit SARS-CoV-2. Here we used comparative pangenomic analysis of all sequenced reference Betacoronaviruses, complemented with functional and structural analyses. This analysis reveals that, among all core gene clusters present in these viruses, the envelope protein E shows a variant cluster shared by SARS and SARS-CoV-2 with two completely-conserved key functional features, namely an ion-channel, and a PDZ-binding motif (PBM). These features play a key role in the activation of the inflammasome causing the acute respiratory distress syndrome, the leading cause of death in SARS and SARS-CoV-2 infections. Together with functional pangenomic analysis, mutation tracking, and previous evidence, on E protein as a determinant of pathogenicity in SARS, we suggest E protein as an alternative therapeutic target to be considered for further studies to reduce complications of SARS-CoV-2 infections in COVID-19.


Subject(s)
Betacoronavirus/chemistry , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Genes, Essential , Genes, Viral , Genome, Viral , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Open Reading Frames , PDZ Domains , Pandemics , Pneumonia, Viral/virology , Protein Domains , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Viroporin Proteins
19.
SLAS Discov ; 25(10): 1141-1151, 2020 12.
Article in English | MEDLINE | ID: covidwho-654127

ABSTRACT

COVID-19 respiratory disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global health issue since it emerged in December 2019. While great global efforts are underway to develop vaccines and to discover or repurpose therapeutic agents for this disease, as of this writing only the nucleoside drug remdesivir has been approved under Emergency Use Authorization to treat COVID-19. The RNA-dependent RNA polymerase (RdRP), a viral enzyme for viral RNA replication in host cells, is one of the most intriguing and promising drug targets for SARS-CoV-2 drug development. Because RdRP is a viral enzyme with no host cell homologs, selective SARS-CoV-2 RdRP inhibitors can be developed that have improved potency and fewer off-target effects against human host proteins and thus are safer and more effective therapeutics for treating COVID-19. This review focuses on biochemical enzyme and cell-based assays for RdRPs that could be used in high-throughput screening to discover new and repurposed drugs against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Enzyme Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Amides/chemistry , Amides/pharmacology , Antiviral Agents/chemistry , Drug Discovery , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/drug effects , Pyrazines/chemistry , Pyrazines/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
20.
Cell ; 182(3): 722-733.e11, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-628738

ABSTRACT

Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. The RBD-dimer significantly increased neutralizing antibody (NAb) titers compared to conventional monomeric form and protected mice against MERS-CoV infection. Crystal structure showed RBD-dimer fully exposed dual receptor-binding motifs, the major target for NAbs. Structure-guided design further yielded a stable version of RBD-dimer as a tandem repeat single-chain (RBD-sc-dimer) which retained the vaccine potency. We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Severe acute respiratory syndrome-related coronavirus/immunology , Universal Design , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/chemistry , COVID-19 , COVID-19 Vaccines , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus Infections/virology , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Protein Binding , Protein Interaction Domains and Motifs/immunology , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Sf9 Cells , Specific Pathogen-Free Organisms , Spodoptera , Transfection , Vaccination/methods , Vero Cells , Viral Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL